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An exact solution of the nonlinear magnetohydrodynamic equations for a viscous 
incompressible fluid of finite conductivity is obtained, which represents a circularly 
polarized structure with time dependent amplitude in a uniform magnetic field. There 
is a phase difference of +n between the spatial structures of the velocity and the 
magnetic field of the disturbance. In  the inviscid perfectly conducting limit, this 
solution represents a standing helical oscillation which is a circularly polarized 
standing AlfvBn wave of arbitrary amplitude, and the sum of the kinetic and magnetic 
energy densities of the oscillation are constant in the absence of any input of energy. 

1. Introduction 
Waves of arbitrary amplitude in a uniform incompressible inviscid fluid of infinite 

conductivity can propagate in either direction along a uniform magnetic field under 
the assumption that the sum of the total magnetic pressure and the hydrostatic 
pressure including the gravitational potential energy density is constant. These are 
known as Alfven waves and propagate with the Alfvdn velocity, which were found in 
1944 by WallBn (AlfvBn 1950). There is equipartition of energy between the magnetic 
energy density of the disturbance field and the kinetic energy density of the fluctuating 
fluid. In the present paper, an exact solution with non-propagating helical structure 
in a uniform magnetic field, and with time-dependent amplitude, is obtained. 

2. Basic equations 

equations for an incompressible fluid may be written by 
When the displacement current in Maxwell's equations is neglected, the MHD 

i 

aB 
V x E = - - ,  

au 
- + ( u . V ) U  = - V  (JXB)+VV'U+F+G,  
at 

at 

V x B = p J ,  

J = ~ ( E + u  x B), 

V.B = 0, 

v . u  = 0, 
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where u is the velocity, B is the magnetic field, J is the electric current density, E 
is the electric field, F is solenoidal part of external force acting upon a unit mass of 
the fluid, G is the acceleration due to gravity (equal to - V@, where $ is the gravi- 
tational potential), P is the pressure, p is constant mass density, ,u is the permeability 
of free space, v is constant kinematic viscosity, and CT is constant conductivity. 

Let us write 
B = B,+b, (7) 

so that b represents the field associated with the disturbance in a uniform magnetic 
field B,, and also 

h, = B,/(,up)$ and h = b/(PP)t, (8) 

where h, is the Alfvkn velocity and its absolute value is denoted by h, below. When u 
and h are perpendicular to h,, we rewrite equations (1)-(6) in the form 

- = - V (5 + $+ + u x (V x u) + (V x h) x h + (h,. V) h + vV2u + F, (9) 
au 
at 

ah 
-=Vx(~xh)+(hO.V)u+yV~h,  
at 

where the magnetic diffusivity is given by y = l/crp. 

3. Solution 

(9) and (10) in the form 
For simplicity, we take B, to be in the z direction. We seek solution of equations 

u = aft) (coskz, -sin kz,  0), (11) 

h = h(t)  (sinkz, coskz, 0 ) ,  (12) 

V x u = ku, V x h = kh and u x h = u(t) h(t)  ( O , O ,  l ) ,  (13) 
for which 

and 
(h,. V) u = - kh,u(t) (sin kz,  cos kz, 0 ) ,  

(h0.V) h = kh,h(t) (COS~Z,  -s inkz,O).  

Then, equations (9) and (10) become simply under hydrostatic equilibrium 

-- dh(t) - - kh,u(t) - ykZh(t), 
dt 

where a special solenoidal body force is given by 

F = F( t )  (COS kz, -sin kz, 0). 
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When F ( t )  = 0,  under inviscid fluid of infinite conductivity the solutions for u ( t )  
and h(t)  are as follows; 

(19) 

(20) 

where u, and E are constant. In  the terminology of Moffatt (1969), the magnetic and 
kinetic helicity densities of the oscillation are estimated to be bg/2k and ut /2k ,  respect- 
ively, where bg = ppu& and the average is with respect to t .  According to (12), the 
lines of force of the perturbed field B, + b are left-handed helices, and the sign of 
helicity is positive. Since the oscillation given by ( 1  I )  and (12) is a helical, periodic 
and non-propagating mode, we may call it ‘helical oscillation ’. By changing the sign 
of z or y components in (1 1)  and (12), we obtain right-hand helices, which also provide 
exact solution. Since the mathematical treatment is similar to the left-hand case, the 
right-hand one is not discussed. It may easily be shown that the helical oscillation is 
the standing counterpart of the circularly polarized Alfvh  wave, which Moffatt (1978) 
calls a helicity wave, which is a well-known exact solution of the MHD equations. 

To see the effects of viscous and ohmic diffusion, we derive equations for u ( t )  and 
h(t) from (16) and (17) as follows; 

u ( t )  = u0 cos (kh,t + c), 

h(t)  = - u, sin @hot + E ) ,  

If F ( t )  = 0,  both u ( t )  and h(t)  satisfy same equation. Since these equations are now 
linear, the behaviour follows the well-known linear pattern, viz, 

(i) when hi 5 (k2/4) (7 - v)2 where 7 $: v, the solution is of damped type and not 
oscillatory in time, and 

(ii) when hi > ( k 2 / 4 )  (7 - u ) ~ ,  the solution is of damped-type oscillation with 
frequency w given by 

and damping time constant 7 given by 

w2 = k2hg [ 1 - k2(q - ~ ) ~ / 4 h g ] ,  

7 = 2/k2(q  + v). (24) 

Under the special case of 7 = v, o and 7 are given by 

and 

respectively. It is clear that magnetic and kinetic helicity are not conserved for these 
cases. When the function F ( t )  is given, the forced solution may be obtained. But, 
since the force term (18) is necessarily artificial for the present, we do not discuss 
further. 

The equation of energy conservation is given by (from (16) and (17)) 
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where u2 = ]ul2 and h2 = lhI2. The first term on the right represents an energy sink 
due to viscous and ohmic dissipation. The second term is energy source supplied by 
the external force per unit time. In  the absence of viscosity and resistivity, the 
equation becomes 

for F(t )  = 0. It is found that the sum of the kinetic and magnetic energy density of 
the disturbance is always constant. Also, as is evident from (19) and (20), for the 
case of arbitrary amplitude Alfvhn waves, there is equipartition of the kinetic and 
magnetic energy density at all times. 

Qpu2 + 3ph2 = conat. = ipu;, (28) 
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